5 research outputs found

    Double smart energy harvesting system for self-powered industrial IoT

    Get PDF
    312 p. 335 p. (confidencial)Future factories would be based on the Industry 4.0 paradigm. IndustrialInternet of Things (IIoT) represent a part of the solution in this field. Asautonomous systems, powering challenges could be solved using energy harvestingtechnology. The present thesis work combines two alternatives of energy input andmanagement on a single architecture. A mini-reactor and an indoor photovoltaiccell as energy harvesters and a double power manager with AC/DC and DC/DCconverters controlled by a low power single controller. Furthermore, theaforementioned energy management is improved with artificial intelligencetechniques, which allows a smart and optimal energy management. Besides, theharvested energy is going to be stored in a low power supercapacitor. The workconcludes with the integration of these solutions making IIoT self-powered devices.IK4 Teknike

    Supercapacitor Electro-Mathematical And Machine Learning Modelling For Low Power Applications

    Get PDF
    Low power electronic systems, whenever feasible, use supercapacitors to store energy instead of batteries due to their fast charging capability, low maintenance and low environmental footprint. To decide if supercapacitors are feasible requires characterising their behaviour and performance for the load profiles and conditions of the target. Traditional supercapacitor models are electromechanical, require complex equations and knowledge of the physics and chemical processes involved. Models based on equivalent circuits and mathematical equations are less complex and could provide enough accuracy. The present work uses the latter techniques to characterize supercapacitors. The data required to parametrize the mathematical model is obtained through tests that provide the capacitors charge and discharge profiles under different conditions. The parameters identified are life cycle, voltage, time, temperature, moisture, Equivalent Series Resistance (ESR) and leakage resistance. The accuracy of this electro-mathematical model is improved with a remodelling based on artificial neuronal networks. The experimental data and the results obtained with both models are compared to verify and weigh their accuracy. Results show that the models presented determine the behaviour of supercapacitors with similar accuracy and less complexity than electromechanical ones, thus, helping scaling low power systems for given conditions

    Photovoltaic Energy Harvesting System Adapted for Different Environmental Operation Conditions: Analysis, Modeling, Simulation and Selection of Devices

    Get PDF
    The present research work proposes a photovoltaic energy harvester and an appropriate direct current (DC)/DC converter for a harvesting system after the study of the devices and taking the operation conditions. Parameters such as power, efficiency and voltage are taken into account under different environment conditions of illumination and temperature in order to obtain the best possible response. For this reason, suitable metal-oxide semiconductor field-effect transistor (MOSFET), diode, coil, frequency, duty-cycle and load are selected and analyzed for a DC/DC converter with boost architecture.This work has been supported by IK4-TEKNIKER research institute own funds and the joint work of Electronics and Communications and Intelligent Information System units and by the Department of Education of the Basque Government within the fund for research groups of the Basque university system [IT978-16]

    Mini Wind Harvester and a Low Power Three-Phase AC/DC Converter to Power IoT Devices: Analysis, Simulation, Test and Design

    Get PDF
    Wind energy harvesting is a widespread mature technology employed to collect energy, but it is also suitable, and not yet fully exploited at small scale, for powering low power electronic systems such as Internet of Things (IoT) systems like structural health monitoring, on-line sensors, predictive maintenance, manufacturing processes and surveillance. The present work introduces a three-phase mini wind energy harvester and an Alternate Current/Direct Current (AC/DC) converter. The research analyzes in depth a wind harvester’s operation principles in order to extract its characteristic parameters. It also proposes an equivalent electromechanical model of the harvester, and its accuracy has been verified with prototype performance results. Moreover, unlike most of the converters which use two steps for AC/DC signal conditioning—a rectifier stage and a DC/DC regulator—this work proposes a single stage converter to increase the system efficiency and, consequently, improve the energy transfer. Moreover, the most suitable AC/DC converter architecture was chosen and optimized for the best performance taking into account: the target power, efficiency, voltage levels, operation frequency, duty cycle and load required to implement the aforementioned converter

    Energy Harvesting Technologies and Equivalent Electronic Structural Models - Review

    No full text
    As worldwide awareness about global climate change spreads, green electronics are becoming increasingly popular as an alternative to diminish pollution. Thus, nowadays energy efficiency is a paramount characteristic in electronics systems to obtain such a goal. Harvesting wasted energy from human activities and world physical phenomena is an alternative to deal with the aforementioned problem. Energy harvesters constitute a feasible solution to harvesting part of the energy being spared. The present research work provides the tools for characterizing, designing and implementing such devices in electronic systems through their equivalent structural models.IK4-TEKNIKER research institute own funds and the joint work of Electronics and Communications and Intelligent Information System units and by the Department of Education of the Basque Government within the fund for research groups of the Basque university system IT978-16
    corecore